Copy 25 of 70 copies

\

X

B)

A COMPUTER PROGRAM FOR SOLVING SEPARABLE
NONCONVEX OPTIMIZATION PROBLEMS

IDA PAPER P-1318

057755

A

~

= AD/

Jeffrey H. Grotte

st G BAOPL G daiipe il Gl TONEN RO

with appendices by

James E. Falk
Paul F. McCoy

AD No.

T R A N S iR

January 1978

DDC FiLE copy

o
U
O
s

m

AUC 21 1978

ni s yh ATl A
PO AT AR I T T T U ORI 3 0

‘* LT

| 7 B
1
| DISTRIBUTION STA i
F Approved for public release; !
b ! Unlimited

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION

VI AR e sl il Y,

Wncatltatns Y aaiat

IDA Log No. HQ 77-19991

The work reported in this document was conducted under IDA's
Independent Research Program. Its publication does not imply
endorsement by the Department of Defense or any other government
agency, nor should the contents be construed as reflecting the
official position of any government agency.

—T

This document is unclassified and suitable for
public release.

»

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dota Entered)

- REPORT DOCUMENTATION PAGE BEFORE COMPLETING PORM
v j 7. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
P-1318 T
4. TITLE (and Subtitle) S TVYPE OF REPORT & PEROD COVERED
VCOMPUTER PROGRAM MOR 01 VING SEPARABLE Final

NONCONVEX Op'TIMIZATION PROBLEMS

6. PERFORMING ORG. REPORY NUMBER

P-1318
7. AUTHOR(s) 0. CONTARACTY OR GRANT NUMBER(s)
Jeffrey H. Grotte with appendices by
James E. Falk and Paul McCoy Independent Research
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Institute for Defense Analyses AREA & WORK UNIT NUMBERS
Program Analysis Division
400 Army-Navy Drive, Arlington, VA . 22202
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
January 1978
13. NUMBER OF PAGES
102
4. MONITORING AGENCY NAME & ADDRESS(i! dilferent from Controlling Office) 18. SECURITY CLASS. (of thia report)
Unclassified

18a. DECLASSIFICATION ODOWNGRADING
SCHEDULE

_N/A

. DISTRIBUTION STATEMENT (of this Report)

This document is unclassified and suitable for public release.
DISTRIBUTION STA'

Approved for public rélecse) it

. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, il different lrom Report) mum U

L

DDC

. SUPPLEMENTARY NOTES U l?:@?qn nl? T

AUG 21 1978
n SIS

\

. KEY WORDS (Continue on reverse side if necessary and identily by block number) B

Global Optimization, Nonlinear Programming, Separable Procramming,
Branch and Bound, Minimization, and FORTRAN

\ |
20:0 ABSTRACT (Continue on reverse side |l necessary and idennty by block number)

The global optima of nonconvex optimization problems are, in general,
impossible to find. Many such problems, however, can be approximated
arbitrarily closely by separable problems wherein all functions are
piecewise linear. Program MOGG is a FORTRAN code which will find a
global optimum to these latter problems. The code 1s based on a
branch and bound algorithm that is guaranteed to terminate after a

finite number of steps. The code incorporates a linear programing b e

DD ,"5i'5s 1473 EoiTion oF 1 wOV 68 18 ORSOLETE

VULAw 1L

——————————————————————————————————
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

- 74
/

B TP ——

il

=

UNGLASET 2

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. continued

subsystem designed to be numerically stable even for ill-conditioned

problems. §
\ \

s

11 Sogiien
3 Can 3¢

sy (2]’
KT SE——

Amanaases B N Y
8y

s

e e o

 BSTRIG l’.i[! %m"' R (S

’Npll i"?d/

ﬁECN.

A

o N
N
»
-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

o RNOEARE L PRy b, e L

0 IDA PAPER/P-lSlB./

| A COMPUTER PROGRAM FOR SOLVING SEPARABLET

e —————n———

-

I,_IONCONVEX OPTIMIZATION PROBLEMS -

oy —

@f Jetfrey H. Grotte
Z z Iz

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202

IDA Independent Research Program

FOREWORD

Nonconvex programming computer programs are an essential
part of the effective practice of operations research as applied
fto military, industrial, and economic problems. Many such pro-
grams, however, fail to converge, find only local optima, or
become unstable when applied to large problems.

This paper documents a computer program that can be applied

to a broad range of nonconvex programming problems. The program
is important in that it finds a global optimum in a finite number
of steps, and has proven to be stable for large problems.

i §

CONTENTS

FOREWORD .
Introduction e TS
B. Problems to Which MOGG Applies
C. User's Guide
D. Sample Problem .
E. ©On the Algorithm .
F. Error Exits
G. Variables and Tolerances

APPENDICES

-- Paul McCoy
C. MOGG Listing

FIGURES

1 A Typical Fij(xj) T
2 The Approximating Function Fij(zj)
3 Sample GETPHI e
1 4 Data Cards for Sample Problem .
5 MOGG Sample Output
6

MOGG Logic

VTR e
e
-

A. An Algorithm for Locating Approximate Global Solutions
of Nonconvex, Separable Problems -~ James E. Falk

alatal

Oy

13
13

B. A Description of the Linear Programming Subroutine LINPRG

A. INTRODUCTION

Mathematical programming, a fundamental tool of operations
research, is frequently used to find solutions to optimization
problems arising in the analysis of military, industrial and
economic models. The utility of linear programming, applicable
to models in which all equations are linear, is well known and
one reason for the widespread use of linear programming 1is the
availability of computer codes for solving linear programming
problems. Many important problems, however, cannot be conven-
iently modelled in a linear framework. A brief survey of recent
literature reveals nonlinear programming applications to missile
allocation, failure diagnosis, media selection for advertising,
facility location, chemical process scheduling, design of
sewers, and so forth. For these types of analyses, nonlinear
optimization problems must be solved.

A major difficulty that arises in nonlinear programming is
the existence of local optima. Except when certain convexity
conditions obtain, nonlinear programming codes in general cannot
guarantee that the answers they produce are globally optimal.
Although the use of local optima may be useful in some cases,
basing analyses on local optima rather than global optima
defeats the purpose of engaging in mathematical programming.

It is therefore noteworthy when a computer code becomes
available that can guarantee a global optimum for a large class
of nonlinear programming problems--the class of separable,
piecewise linear problems--in a finite number of steps. Further,
the code can generate piecewise linear approximations to any
separable, continuous optimization problem and find a globally
optimal solution of the approximate problem. The code has been

&

- . —— - ————————————————————

tested on a wide range of problems, and the size of problems
that can be handled is limited only by computer storage and run
time considerations.

The code is based on an algorithm by James E. Falk of The 1
George Washington University. A theoretical treatment of this
algorithm is reprinted in Appendix A, which also describes some
of the background of this approach. The algorithm uses branch-

and-bound to generate a sequence of linear programming sub-
problems.

An earlier realization of this algorithm, the NUGLOBAL code'’,
was found to have serious stability deficiencies in its linear
programming subsection when applied to large problems. The
code described in this paper, which is embodied in a program
named MOGG, was therefore developed to be stable and also to
correct some other, less serious, computational inefficiencies.

In particular, a linear programming package designed by John A.
Tomlin of Stanford and adapted by Paul F. McCoy of IDA was
incorporated into the new code. This linear programming
package has proved to be trustworthy.

This paper 1s divided into seven parts: Part B concisely
describes the types of problems the code will solve, and the
details of computing piecewise linear approximations to separable,
continuous optimization problems; Part C is a user's guide

explaining the input necessary to run Program MOGG; a sample
problem appears in Part D; Part E presents a flowchart of the
algorithm as implemented in this code; Part F remarks on some
of the error messages that may be encountered during a MOGG run;
and Part G comments on some of the important variables and
tolerances used by the code.

'Hoffman, Karla R, NUGLOBAL--User's Guide, Technical Memorandum
Serial TM-64866, The George Washington University Program in
Logistics, Washington, D.C., March 1975.

2

NPT

-

wes

PRTerswn

e I ——— = SR —— recasmasr - -

Appendix A has already been described. Appendix B is a

description of the linear programming package and Appendix C

contains a complete FORTRAN listing of Program MOGG.

B. PROBLEMS TO WHICH MOGG APPLIES

Consider the problem P-1

' minimize Fl(x)

where X = (xl---xn)
P-1 { subject to Fi(x) < by L s e
Fy(x) = b, 1=q+l,...,m
\ 2. < %, < SRS o [
09 T & Uy e,

We will assume that all Fi(x) are continuous over the
rectangle ZJ < Xj < uj J=1,...,n (this condition is actually
somewhat stronger than necessary, see Appendix A). With no
further restrictions, this problem in general cannot be
solved. However, if each Fi(x) is separable, i.e., if each

Fi(x) can be written
E
F,(x) = R o (3)
3 j=1 3 s [y

then we can approximate Problem P-1 by a piecewise linear
problem in the following manner. Consider Figure 1 which, we
will imagine, depicts some Fij(xj) for Zj < xJ < uj. Let us
divide the interval [2j, uj] into t intervals by specifying the
points {z;, z},..., zg}, which we shall call "cuts" where all

that we require is
i 1 t
Re = 2, € 7, Kwsex gt = 3
J J J

Now we define a new function ﬁi (zj) for £, € 2, ¢ 1

J

follows:

Figure 1. A TYPICAL Fij(xj)

k /
- R k+1 k k

1
for - [z?, z?+ by "B L, B
It is easy to see that Fij(zj) is continuous and piecewise
linear. Figure 2 shows the approximation ﬁij(zj) to the function

Fij(xj) of Figure 1, for the choice of {zg...zg} shown (here t=6).

Figure 2. THE APPROXIMATING FUNCTION ?ij(zj)

Y

FRNITY. TN TN RS-

Al

When lJ and uJ are finite, as is often the case in applications,
then it follows from the first theorem of Weierstrass that by
increasing t, and by judicious choice of the cut points

233

(according to most of the standard measures of "closeness").

{zg...zg}, we can approximate F,.(x,) arbitrarily closely

In this way we have constructed an approximation to Problem
P~1 which we shall call P-2:

n
g o 7 = =
minimize Fl\z) = Z Flj(zj)
Jj=1
where zZ = (Zl"'zn)
-~ n ~
pP-2 ﬁ subject to Fi(z) = le Fij(zj) < bi 1=2, |
~ n ~
Fi(z) = _Z Fij(zJ) b i=q+l,...,n
j=1
L zj < zj < uj d=t e < saitte

Program MOGG constructs the Problem P-2 from P-1 and finds

an optimal solution thereof. Interested readers are referred
to Appendix A, which discusses this approach in greater detail
and which describes and rigorously justifies the algorithm
employed by MOGG.

C. USER'S GUIDE! §

This section provides the information necessary to use
Program MOGG. The notation is from Section A. We make the
following conventions. For any variable xj, if at least one
Fij(xj) is nonlinear, that is, if it is not of the form aij'xj

1Tn this section, @ will represent "zero" and 0 will represent \
the letter "oh." |

L D

where aiJ is a constant, then we will say that xj is a nonlinear
variable. Otherwise, we will say that xJ is linear. If xJ is
linear, then Program MOGG assumes QJ = g and uJ = +o, When

this is not the case, then treating XJ as a nonlinear variable
with 1 cut to enforce the upper bound is permissible. Follow-
ing are the input specifications for MOGG.

Two types of input are required: a user-supplied sub-

routine and data cards. We describe the subroutine first.

Subroutine GETPHI

One component of input necessary to use MOGG is
Subroutine GETPHI (I, J, X, F). Called by MOGG, and given the
values of I, J, and X, GETPHI must set F equal FIJ(X). The
value of X supplied by MOGG will always equal some cut z?. The
value of J will never correspond to a linear variable. At
present, no user-supplied read-in capability is provided. It
is an elementary matter to modify MOGG to build in such a
capability.

Data Cards

Specification Card

Columns Entry Format
1-5 NMROWS - the number of rows of I5

Problem P-1, corresponds to m of
Section A. Note that this includes
the objective function.

6-10 NUMVAR - the number of columns of 15
Problem P-1, corresponds to n.

1L1=15 MAXLP - the maximum number of calls i
to the linear programming subsection
permitted (1@4@ is a typical choice).

16-20 KBUB, = 1 if an upper bound for the 15
optimal solution is to be provided,
otherwise leave blank.

g e . e e

21-25 IXPRIN, = 1 if the user wants printed 15
all feasible points found, otherwise
leave blank.

26-342 Kl, = 1 if the user wants all LP I5
solutions printed, otherwise
leave blank.

31-35 K2, = 1 if the user wishes to see the I5
packed LP matrix at the beginning
of the run, otherwise leave blank.

36-4g K3, = 1 will print LP iteration 5
information. Use for debugging
only--leave blank for general use.

41-45 K4, = 1 if the user wishes to see the I5
brarich and bound list after each
stage 1s completed.

46-5g9 K6, = 1 if the user would like to 13057
scale the LP matrix by dividing
each row by a power of 2 near the
geometric mean of the largest and
smallest (in absolute value) nonzero
entries in that row.

Upper Bound Card

This card is included only if KBUB = 1 on the Specification
Card. It contains the user-supplied upper bound (Format: F1@.6).

Relation Cards

These cards specify the row type. Enough cards are
necessary to allow 2%*NMROWS columns which are considered to be
numbered sequentially. Columns 1 and 2 contain b@ (b=blank,
fg=zero). For k=2, ...,NMROWS, columns czk-1 and 2k contain

-1 if row k of the input problem is an equality,
bl if row k is an inequality (only < is allowed).

Contrary to the notation used for Problem P-1, inequalities

and equalities may be listed in any order.

=~

Ll

ik

Convexity Cards

These cards contain the convexity flags. Enough cards are
necessary to provide NMROWS columns, numbered sequentially.
Column k contains a @ if k=1 or if row k of the input problem
represents a nonconvex constraint. If row k represents a
convex constraint, column k contains a 1. When unsure, the

user should use a @.

Bound and Cut Cards

For each variable, there is a set of cards as follows.
Columns 1-5 of the first card contain the variable number
(format I5). These numbers must start at 1 and increase up to
NUMVAR. Columns 6-18 contain the value of the variable NOINC
(format I5). For linear variables, NOINC = @ and no further
entries or cards are required. For nonlinear variables, NOINC
is the number of cuts desired for this variable. NOINC is the
same as "t" in Section A. If NOINC # @, then columns 11-15
must contain either "AUTO." or "MANU." (format A5). The period
must appear. If "AUTO." appears, MOGG will automatically make
the cuts. The next card must contain the values of £, (columns
1-14) and Uy (columns 11-2@) for this variable (format 2F1@.6).
No further cards are then needed. If "MANU." appears, then the

values of z’ to ZNOINC must appear, in order, on the next cards.

J

Each z? occupies an F1@.6 field. As many cards as necessary
are to be used.

Right Hand Side Cards

Enough cards are required to provide NMROWS Fl1@.6 fields.
These contain, in order, the right hand sides of Problem P-1
(the bi)' The first field, corresponding to the objective
function, must contain @.4.

O e < T ——

{
&
3
L
4
:

1

Linear Variable Cards

For each linear variable, in order, enough cards are

required to provide NMROWS F1@.6 fields. The kth field contains

the coefficient of the linear variable in row k.

Variable Names Cards

Enough cards are required to provide NUMVAR A5 fields.
These contain, in order, alphanumeric names for the variables.
If no variable names are desired, then a sufficient number of
blank cards must be supplied.

Problem Title Card

Finally, one card must be provided for the problem title.
Any alphanumeric expression will do.

D. SAMPLE PROBLEM
This problem is discussed in Section 4 of Appendix A.
Minimize 2xi - 9xf + 9x, - 2x: + 9x: - 9x,

subject to 6xf - 18x,

IN

0 :

-6xf 4 18x,

IA

9

3.
Figure 3 is a 1listing of the subroutine GETPHI. Figure 4 ,

reproduces the data cards for this problem. Figure 5 shows the
MOGG output. This run took 3.7 seconds of CPU time (on a CDC 6400

0 2 x4, X,

IA

computer).
SURKOUTINE GFTPHI (TeugaXoF)

F=Nat
GOTO(100,2004300) 0T

1n0 TF(JeFCRa)IF=),0X083ay axX®xeq aX
TR UeFGePIF2(@2e) #XBE4Q, 0 XX, #X
RETURM

200 TF(JeFLe1tF=neXex
TF(JeFbeP)F=(=18,) X
RETUK®

AN TR (JeFLaIF=(=he)ox®x
TF(JeFQRap)IF=18,%x
RPETURN
FND

Figure 3. SAMPLE GETPHI
9

- 3 “ i 4 - (i — = . q.lu .v..

W37804d 3ITdWYS 304 SQYYI ¥Yiva " 34nbiryg

.nson n

I.u&ﬂ‘nuﬁ.u%m.-hwﬂanx 5750 305 8% nﬁhﬂﬂ!ﬂ#.n‘gﬂkﬂﬂlﬂ

o8 6L 2~ LR/ B/N/ ?»w,uvw..o—.-.i_?a-. At A
66 mwm_m _ 6665 omenmmnamoma 8 “mmmm.aamm m_macm 5666666666666666 amnoaemaunoaun oo
' ' e ' '
M—n cunnun amwm-wnunwaw_mnsawmuuaa—mumaunauwuauuaunc-_ou“n-oasauv,u _-o-?-nue-onnnn-o..o.
% om m----~__----ss_nssﬁhnhsss.‘hshsﬁ-----_-h- m---~f-----n~_-nhhh-n~“
o) [*2 *
" H L wewgwwouom._wowwowowuo_wwomwmmoww_wwmw_.wwwwww_womw”wcwow _wwwwuwww__wmuwaawwuwuuowauuoouoJ,
Bis | |
m—m 2 9 wmmnmmmnmm_mmmmwmmmﬁmmmmmmnnmmmnnmmmmmmmﬁmmnmnmammmﬂmmmmmmmnmmmmmmmmmmmmmmmmmmnnm_
gL L { {
M—u mm 5 mvvﬁ«.vvvvvvvvwcvwvvvvvvvvvvvvewvv-vv~v.vvwvvv~vwonvv_wvvvvvvvvnvvvvvovvvvvvwnvvvnv:
3 3 z |
) _M_ g : ly Mnnnnnnn—.mn_nnnmnmnnnm_mmmnnn..mannmnnnnnmmmnmnnnnnnnn_mnnnmnnmnn_nnnnnmnnnnnnn—.n mnnn*
5 H S » =] |
n wn L > » mn 9--_---_~NN--NNN_N-‘.NNNN-NNNNNNN--~N~NNNNNN-N-NN~N~_N~NNNN~N~N, NNNNNNN_NN# {
m -y > = '
mm g mm MN M_—_—__——_:p———~_——_—_————_—_____—————__—_———-_——_w———_—_—._—————————_ ——_—————_—_—A
™ m h -l\“ ' “ ﬂ 3 P 08 b2 8. 12198 WL v €l ES’~0‘m’$—m. 1909 65 35 (5% .a-mﬂn.r_aSm~3=w¢w.vvnv_J _awgﬂ:‘ﬂ‘xnn_a_n_\nn-n?nﬁn-~ﬂ-~:}m_-_:_t—:» HeEeLIssy ﬂ_n .' |
Lm B oPEf el wEEE,E@:JZ2:::;2:_.:._:__:::;_PPE;EIQEZZ:.el_;.__,gi__:::_:;__ looooooo0oos
° o @il o o
I CLanaf sl ot B 0 n 0 i o 0 0 §-
Tl [P el Bt 3
THERL ol Ele =" o |g 0 socuwom |1 2cuom [2 cuom [s cuom (I v cyom (0 ¢ cuom [0 z asom [0 1 cuom [
sl 82 2 2° S Sh | _
g): 5 =1 Sl 8l 3 ; pot 2 €
F It 9 aly Sl MN o g [0 socuom _u L asom «u o asom ‘m s guom ‘D + auom __“_ € ayom *m z quom _D 1 asom [
s -
_mnumwmm_m_,T _ T1o
H o« St o 4 om I 0 & axom _m_ L 2HOM _m_ 9 quom _: s adom _u v avom |1 ¢ cuom [0 z quwom 0 + cuom 0
- 2
3 s 2" 3| gl 3L : ; ol i : 010
s al gl = i Mi 0 0 e cuom _m L adom ~c 9 gHom _D s asom | + qguom mm_ € ayom T zawom [0 1 asom [
s =)' 3| gf 5L _ ‘oLny! ; b
sl Sle 2f M.. am 0 8 auom “u L auom A: 9 auom AD s agom _: + Quom Vm € quom *D z auom | 1+ cuom D,
m' : m_ 30 ‘€ ‘0 |
Sle M~ 2 o aD 0 s avom |1 o avom _: 9 cHOM ~: s ayom i: v asom [0 couom [J zaom [0 _n_mOZ G
3 5|, sl _ _ -0Lnd9 _
”~ Ms.ac U e asom _m L adom _: 9 ayom _: s aHom _a v QuoMm T € ayom Wu z adom |l 1 cuom D
m_ mr-l > ‘0
o g [0 soauom —m L ayuom A_”_ 9 axom —: s asom _a v a¥Oom _: € qyown Lm z quom _D | quom z—
>1i0
D =
um 0 souwom |1 2 ovom [1 9 cuom (I s auom |1 v cuom |1 € cuom [0 z omom |1 + cauwom [
| _ I e
0 e asom wa L a¥om _m 9 a¥om _D s ayom _: * quom T € quom _u zgaom |l icoom mﬁ

| zuqao«a_ng:qw,,.

PROGRAM MOGGR=.FINDS GLOBAL SOLUTIONS TO APPROXIMATE PROBLEMS

PROBLEM INFORMATION

3ROWS
2VARIABLES
100 LP PROBLEMS WILL BE SOLVED
ROW TYPEe=
n1l
CONVEXITY FLARS== !
.14
VARIARLE CARDS REPKODUCEN== 3
1 6AUTA,
0. 3.100
? 6ALTA.
0. 3.L00
NHS CARD(S) RFPRODUCFD=-
0, 0. 9,000
FOR YOUR INpOPMATIUN VARJABLE NUMBER KLO KRO
1 1 4
2 8 14
STARTING TO ITERATE
STAGE «.PROGLEM LOWER BOUND UPPER BOUND BRANCHING VARIABLF
Neh '3'°67 ‘2-667 2
DONE WITH THIS STAGE
BLBs =3,667 » BuBg «2.667 s BRANCHING ON PRORLEM 0,09 VARIARLE NUMBRER 2
10 LB GT RUR
162 =3,500 «2,000 1
1e '3.500 «2,000 1
DONE WITH THIg STAGE
8182 =3,50n » RUBz =2e667 + BRANCHING ON PROBLEM 1,39 VARIABLE NUMBER 1
201 2,857 «2,857 0
242 LB GT RUR
DONE WITH THIS STAGE
61.8a =3.50n v AUBe «24857 o BRANCHING ON PRORLEM 1.2+ VARIABLE NUMBER 1
309 «2,857 -2,857]
302 LB GT BUR

wees=SAMPLE PRNBLEM
ORJECTIVE FINCTION AT OPTIMUM «248S7
VARIARLE VALUES AY UPTIMUM=e

X1 X2
1.71e 14000

Figure 5. MOGG SAMPLE QUTPUT

Ld

Note some of the features of the output. The KLO, KRO
columns display the limits of the "k-sets" of Appendix A, which
are stored as a single variable array. For computational pur-
poses, linear variables are assigned a k-set in which KLO equals
KRO. MOGG prints "STARTING TO ITERATE" after completing its
data storage routines, and begins the branch and bound proce-
dure. Problems are numbered by their stage and their position
in that stage. After completion of each stage, a best lower
bound (BLB) and a best upper bound (BUB), if any, are displayed.
If no best upper bound is found, BUB will be set equal to 1.E74.
If no upper bound is found for an individual problem, the word
NONE will appear. In Problem 1.1, LB GT BUB indicates that the
lower bound for that branch is greater than the best upper
bound presently known, so that no further investigations along
that branch will be pursued. Problem 2.1 displays "@" as the
branching variable to indicate a terminal node of the branch
and bound tree.

Additional information can be requested on the specifi-
cation card. Most of the resulting displays are self explanatory,
however, the user should be aware of the following:

e When Kl=1, the LP solution will be printed in
"packed" form so that basic variables which
are equal to zero will be omitted.

e When K2=1, the packed (zeros omitted) matrix
will be printed by columns going across the
page, with the row number beneath the entry.
An identity matrix is annexed to the left
of the structural matrix.

e When K3=., the user should refer to Appendix B
for an explanation of the LP iteration printout.

e When Ki=1, the column beneath "FLAG" contains
the pointer used to divide the k-sets (x* in
Appendix A).

Le

ailics

B e A AR A T e RN el

E. ON THE ALGORITHM

Appendix A contains a thorough description of the
algorithm. Figure 6 is a flowchart representing the MOGG
implementation of this algorithm using some notation from
Appendix A. The variable NOLEFT is the number of problems
left to solve in any given stage.

The linear programming code used by MOGG is described in
Appendix B, and listed in Appendix C. It was chosen for its
numerical stability, an important consideration when trying
to solve "real world" problems.

F. ERROR EXITS

MOGG makes numerous dilagnostic checks throughout its
operation and, under some circumstances, will terminate. When
this happens, a self-explanatory diagnostic message will be
printed along with a reference to the region of the code where
the error occurred.

' G. VARIABLES AND TOLERANCES

These common blocks provide interroutine communication for
MOGG. Block /FIRST/ contains mostly main program variables,
while /WORK/ and /BLOCK/ are primarily for the use of the
¥ linear programming subsection. Among the important variables
are the following (see Section A and Appendix A for terminology):
KLO(I), KRO(I): These define the lower and upper

boundaries of variable I's
original k-set.

W: This array is used by LINPRG to
return optimal LP solutions.

LFLG: LINPRG uses this to indicate infeasi-
bility of a subproblem.

CUTS: This array stores all the cuts z? .

13

Figure 6. MOGG LOGIC

Read in data

Set up problem
NOLEFT=1

BUB= unless provided

[| Solve next problem in this
R stage. Set LB for this prob-
lem equal to optimal objec-
tive function value, if any

i

[NOLEFT = NOLEFT - 1 |

|

Is this problem infeasible YES
or is LB > BUB?

J exit if in
NO ﬂth stage

Put problem on list, along
with LB and information for
tracing back up branch and
bound tree

AI

Create 0

]

Compute branching variable, if any,
for this problem and store it on list

Is ? a feasible point NO
of the approximate problem?
‘ YES
Compute objective function value

of §. 1If less than BUB, replace
BUB by this value

o B
t—o——{ DOES NOLEFT = @7 .
" (continued on

YES (next page)

14

ZLSTNO
ZLSTPA

L3TKL
LSTKR
ZLSLB
IBRVR
FLAG

B

Figure 6. MOGG LOGIC (con't)

l |

Find lowest value of LB
of those nodes remaining
on the list. Call it BLB

{ T1s BLE = BUB? >—tES——|Find that

node on the
list fgr
INO which B

generated
Branch on node the present

coyresponiing £g value of BUB.
PEESSN. TR 8 is an opti-

of BLB. Remove it
mal solution

from the list.

Begin a new stage, {
set NOLEFT equal
to 2 or 3 CEEEE)

Seven arrays that constitute the list
representing the branch and bound tree.
ZLSTNO stores stage and problem numbers,
ZLSTPA stores the number of the immediate
predecessor of each problem, LSTKL and
LSTKR are the lower and upper boundaries
of the k-sets which distinguish this
problem (only the k-sets relating to

the predecessor's branching variable

are stored). ZLSLB is the objective
function value computed for this problem.
IBRVR is the branching variable for this
problem and FLAG is used to determine

the new k-sets when branching on this node.

These are used to store the packed LP
array.

This array stores the right hand side
values.

There are five tolerances specified by DATA statements
which are used by MOGG.
BUBTOL: Used to remove insignificant differences when testing
for the smallest BUB.
FEASTL: Margin within which & will be considered feasible.

DIFFTO: Removes insignificant differences when choosing a
branching variable.

DONTOL: When BUB and BLB are within DONTOL of each other, the
problem will be considered solved.

CUTTOL: Used to determine when the partition indicator (FLAG)
for a k-set falls on a cut.
All other tolerances are used by the linear programming
subsection and should be changed with caution. A discussion
of LINPRG tolerances 1is contained in Appendix B.

The arrays are presently dimensioned large enough to solve
most problems of interest. If the user wishes to redimension
the arrays, he is referred to the COMMENT statements at the
beginning of the MOGG code (see Appendix C). Note that the
variables MAXVAR, MAXCUT, LSTMAX, MAXROW and MAXA must be
assigned new values. At present, MOGG can handle

100 Original variables
1X00 Total lcufs
100 Rows
700 Entries in the branch and bound list
5000 Nonzero elements in the packed
linear programming array.

The MOGG routine has performed well on a CDC 6400 with
60-bit words. If round-off problems appear when the code is
implemented on machines with smaller words, conversion to
double precision is recommended.

16

APPENDIX A

AN ALGORITHM FOR LOCATING APPROXIMATE
GLOBAL SOLUTIONS OF NONCONVEX,
SEPARABLE PROBLEMS

James E. Falk

SERTAL T-262

AN ALGORITHM FOR LOCATING APPROXIMATE
GLOBAL SOLUTIONS OF NONCONVEX,
SEPARABLE PROBLEMS

James E. Falk

April 20, 1972

THE GEORGE WASHINGTON UNIVERSITY
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
Program in Logistics

S

e

St o

T

1. INTRODUCTION

An algorithm for finding global solutions of nonconvex
separable problems was developed by Falk and Soland [3] and Soland
[8]. The method is based on the branch and bound philosophy and
yields a (generally infinite) sequence of points whose cluster
points are global solutions of the problem. The implementation
of the method is severely limited by the necessity of computing
convex envelopes [4] of the functions involved although a number
of applications of the method have been made (e.g., [5], [9]).
These applications were possible because of the special structure

of the functions involved (e.g., concave or piecewise linear).

The traditional method for treating separable problems
involves calculating piecewise linear approximations of the func-
tions defining the problem and applying a modification of the
simplex method to the resulting problem (see, e.g., Miller (7]).
The modification amounts to a restriction on the usual manner of
selecting variables to exchange roles (basic to nonbasic and vice
versa) and will yield a local but not necessarily a global solu-

tion of the approximating problem.

In this paper we present a method that will yield a global
solution of the approximating problem referred to above. The method
is similar to the Falk-Soland algorithm but takes advantage of the
special structure of the resulting approximate problem and employs

the branch and bound philosophy to set up and monitor the solutions

of a finite sequence of linear subproblems.

e

Recently Beale and Tomlin [1] announced that they have developed
a similar algorithm which they have incorporated into their UMPIRE
mathematical programming system [10]. % - Dasic idea of their method
is the same as that of the algorithm detailed herein although their
rules for selecting branching nodes and branching variables are dif-
ferent, being developed from an integer programming point of view
while ours are modifications of the rules developed in the Falk-Soland
method [3] and its extension by Soland [8].

The problem which we address has the form
ninimize Fo(x)

problem Q { subject to Fi(x) Eh L=1,000,m

% X L

< <
= =

where £ and L are finite lower and upper bounds respectively on x .
We assume that each Fi (i=0,1,2,...,m) is separable, i.e.,
n

F (%) = jil Fij(xj) o) P S "

and that each Fij is continuous. As extension to the case where

F is piecewise continuous is covered in Section 5.

ij

In Section 2 we define the approximating problem of problem Q
and construct the problem.obtained by replacing each of the functions
involved by their convex envelopes. A related problem is simultaneously
introduced and shown to give a sharper underestimate of the optimal
value of the approximating problem than does the convex envelope prob-
lem, It is this related problem which the branch and bound procedure
solves first to get estimates on the optimal value of the approximating
problem and to set up new problems if the estimates do not yield a
global solution,

A detailed analysis of the complete method is given in Section 3

and an example follows in Section 4. Some computational considerations

are given in Section 5.

2. THE APPROXIMATING PROBLEM AND CONVEX ENVELOPES

The approximating problem of the original problem Q is obtained

by replacing each function F by a piecewise linear approximation

ij

over the interval [2j,Lj] + One common method (see, e.g., [7]) that

is employed involves selecting pj + 1 grid points vy, in

JO""'prj

[zj, Lj] where yjo = lj and yjp = -Lj and using convex combinations
k|

of the numbers Fij(yjk) and Fij(yj,k+1) as approximations to the

values of Fij(xj) over the subinterval [yjk’yj,k+1] . Figure 1
illustrates this type of approximation,
) Fij
—t t —— + 4— X
L, = L
N B L TR - T Y3673
-+
-+
<4

Figure 1. PIECEWISE LINEAR APPROXIMATIONS

h=3

!'_,‘F._,_.,..,.,...,.........--|lIllllllllllllllllllIlllIllllllIlIIlll!!!!!!!!!!!!!"""""‘ —

Mathematically, we obtain this approximation by setting

N
Fij(xj) = fij(ej) where
) T L Pyl o
J
where Kj = {0,1,...,pj} ’ Bj = (ajoscu-’ejpj) if
PR (2.2)
keK, Ji 3k]
J
keK Jk
h|
; g =

and if we add the further restriction that at most two of the weights

{® keK,} are nonzero, and if two are nonzero, then these must

jk F Yy

correspond to adjacent grid points. This last restriction is necessary

since without it one may obtain any point in the convex hull of the set

Wy, F, 3. P eesnly, F..(y.))} which lies on the vertical line
¥307F15 03000 yJ.pj’ ij stPj
passing through xj . As we shall have occasion to refer to this

restriction later, we make the following definition.

The Adjacent Weights Restriction (AWR): Let KC:!% be a set of

consecutive integers. The set of numbers {Ojk ¢ keK} satisfies the

adjacent weights restriction if at most two of these numbers are nonzero,
and if ejs, ejt > 0 then either s =t -1 or s=¢t+ 1,

We shall use the symbol fij(ej) to denote the function defined

by expression (2.1) and the symbol fij(xj) to denote the function

fij(ej) constrained by relations (2.2), (2.3), (2.4) and the AWR.

Thus fij(ej) denotes a linear function of the variables

ejo,ejl,...,ejp while fij(xj) denotes a piecewise linear function
5

A-4

of the single variable xj such as that illustrated in Figure 1.

Likewise
n

£46) = T £, ,.08.)
i Poltlls.

and

for i =0,1,2,...,m .

By replacing each Fi (x,) by its piecewise linear approximation

33
fij(xj) , we obtain the following approximate problem
. n
minimize f (8) = I b S : B N e
o j=1 ke, dK 0373k
J
n
subject to f.(8) = I I HER e Jyr=ih)
j 8 j=l kCKj Jk 1] ka il {1 = l,""m)
problem P {
z A =1 g = L ssesnd
kek, K
J
%k;O (j=L“”n;Rﬁ)
{6, : keK,} satisfies AWR (I = Lyens i)
| jk J
Here 6 = (81;62;...;6n) = (610,...,elpl;ezo,...;...;Ono,...,enpn) .
The solution value of this problem is offered as an approximation to the

solution value of the original problem, problem Q. The solution point |
e* of problem P yields an approximation to the solution of problem Q
via the relations (2.2), i.e.,
* .
j kix_ajkyjk J = Lisesynt
Problem P is the usual problem that is addressed when seeking

solutions of separable programs (see, e.g., [7]). The method of

"solution'" involves generating a basic feasible solution of the linear
A=5

program associated with problem P that satisfies the AWR., A
modification of the simplex method is then used to sequentially
change the basis until a local solution of problem P is obtained.
This modification amounts to a restricted basis entry rule which
insures that the AWR are always satisfied by the basic feasible
solution associated with each stage of the simplex method. Thus the

only nonbasic variables that may enter the basis at a given

ejk
iteration are neighbors of existing basic variables. If such a
variable is chosen to enter the basis, the outgoing basic variable
must be chosen so that the new basic feasible solution satisfies
the AWR. It may be shown that this method will yield a local
solution of problem P, so that if problem P is convex, the solution
will be a global solution. In particular, if problem Q is convex,

then so is P and a global solution is assured.

In this paper we are concerned with a method that will
produce global solutions of problem P. The method may be considered
a specialization of the method of Falk and Soland [3] and the exten-
sion described by Soland [8]. 1In this method it is necessary to
compute ''convex envelopes" of all functions involved in the problem
description over appropriate intervals. A number of convex sub-
problems are then set up and solved with the branch and bound philos-
ophy monitoring the solution values of these problems and guiding

the creation of new subproblems. The convex envelope of a function

of a single variable fij(xj) over an interval [zj, Lj] is that convex
i [~

function fij defined over [lj, Lj] such that, if dij is any

convex function on [zj, Lj] which underestimates fij at every

c
also underestimates f over

ij ij
[lj, Lj] . Roughly, the convex envelope of a function is the highest

point in [lj, Lj] , then d

convex function which underestimates that function over the appropriate
interval., Alternate and more general definitions and relations con-

cerning convex envelopes are found in [4].

A-6

il

We are interested in determining the convex envelope of the

piecewise linear functions fij(xj) defined by the relations (2.1)

through (2.4) together with the AWR. It is clear geometrically, and
not difficult to show analytically, that the convex envelope of this

function over [Lj] is the function fi§(x D It

: i b
c
£, (x,) = min P 6B (y..) 2.5
1y MR R Yy e
J 3
gty T8, ¥ wx (2.6)
kek JK Ik 7]
]
T B 1 (2.7)
keK, jk
J
ejk >0, keKj . (2.8)
Note that we do not impose the AWR on the definition of fi§(xj) .
We illustrate this definition in Figure 2 which may be compared to
Figure 1.
£ (%
1 Thie]
-+ t } 4 i Po— x
- ; 3
~e
~
S~
o ~
~
c g
1

Figure 2. CONVEX ENVELOPES

A=T

Thus the calculation of fij(xj) at a given point x, involves

3

the solution of a linear program, The first subproblem addressed by
the method described in [8] would be

n
c c
min fo(x) jil foj(xj)
- n
subject to fi(x) = jZ f j(xj) < b (L = 1....,m)
L <x<L.

This is a convex program whose solution value serves as an underestimate
of the solution value of problem P, Because of the piecewise linear

nature of the functions f;j 5

to a linear program. This approach, however, invelves explicitly

it is possible to convert this problem

calculating the functions f © for each i and j + Moreover, it

ij
would be necessary to do this for a number of problems of the above
form., We may avoid these calculations by considering the related

linear program:

t n
6) = z
mtn Tt j=1 kzx 3" °j(y1k)

n

1 Jsubject to £ (8) = L I (y.,) &b (1 =1,...,m
i yui kel(j Jk ij ik i
X 0 =1 (j=l,...,n)
kek, K
i
: ejk;0 (j=1....,n;keKj) .

Note that problem Pl is similar to problem P except that the AWR are not
present., Moreover, given a feasible point 8° of problem P, it follows
that the point x° defined by

X, = z

i keKj

A-8

(o}
851 1k

is feasible for the convex envelope problem by virtue of the
inequality

(4 o o
fij(xj) ;fij(e) N

It is, however, possible that the convex envelope problem has feasible
points x for which there is no feasible 6 satisfying the above
expression., For if x is feasible to the convex envelope problem,
for each i = 1,...,m there must be a vector i which satisfies
conditions (2.6), (2.7), and (2.8) together with the conditions

fi(e) ;'bi . This, in itself, does not imply the existence of a
single vector which satisfies all of these conditions. On the other
hand, any point feasible to problem P is also feasible to P1 so that
the solution value of P1 offers a valid lower bound on the solution

value of P,

3. THE BRANCH AND BOUND ALGORITHM

In this section we present an algorithm to calculate the global
solution of problem P which is based on the branch and bound philosophy
(see, e.g., [6]). The algorithm considers subsets of a linear polyhedron
containing the feasible region F(P) of problem P, A lower bound on

the optimal value of problem P is found by minimizing fo(e) over each

of these subsets and selecting the smallest of these. A check for
solution is made which, if successful, yields a global solution of P.

If the check fails, the subset corresponding to the smallest lower bound
is further subdivided into either two or three new linear polyhedra and
the process continues as before with new and sharper bounds being deter-

mined. The process is finite and terminates with a global solution of P.

As is customary with branch and bound procedures, the algorithm
is described in terms of a branch and bound tree, (See Figure 6 for an
example.) The nodes of the tree will be identified with the symbols

Nl, N2, N3,... and each node Ni will correspond to a linear subproblem

pl of problem P, It is convenient to also use the notion of a 'stage."

The first stage of the method consists of problem Pl (or node Nl) and
A-9

its solution. The second stage of the algorithm consists of problems

P1 together with either 2 or 3 new subproblems created from problem Pl.

A hew stage is created when a previously solved subproblem is chosen
for branching and new subproblems are formed. For example, the tree of
Figure 6 illustrates that 8 subproblems were formed in 4 stages. The
first stage contains node Nl; the second contains nodes Nl, Nz, N3
and N“ ; the third stage contains these nodes and the new nodes

N5 and N6 , and the fourth stage contains nodes Nl through N8

With each node Nt there is associated a linear program of the

form
- n
minimize f (8) = I £ 6, F .(y.)
o P ksKj jk oj ik
n
subject to fi(e) S, eijij(yjk)'z bi (i=1,...,m)
¢ j=1 keKj
problem P~ ¢
'[. e = l (j-l.ooa’n)
keK 3k
i
ejk 20 (3=1,...,n; keKj)
t
| ejk =0 (3=1,c004m} kév(j)
where the sets K; (j=1,...,n) are subsets of consecutive integers
of the sets K, . Note that each problem is a linear program and that

]
these problems differ only in the constraints ejk = 0 (Jelyeesqens ktK;) .

Problem P1 has K; = Kj (j=1,...,n) so that problem P1 resembles problem P

except that problem Pl does not have the AWR imposed on it. Let F(Pt)

denote the feasible region of problem Pt and F(P) denote the feasible
region of problem P. Note that

F(P) = F(?L) (3.1)

A-10

Yy

and that F(Pl) is a linear polydedron whereas, in general, F(P) is i

not even a convex set, Assuming F(P) # ¢ , problem Pl will have
at least one minimizing point 81 . In general, let 8t denote a

solution of problem Pt, if one exists, and set

t t
LB(t) = fo(e) if 8~ exists
+o otherwise, t
It follows that
LB(t) g min {£ (8) : 6cF(®") NF(®)} . (3.2)

It is sometimes possible to obtain an upper bound on fc(e*)
from problem Pt. In fact, 1if E is any feasible
point to problem P, the number fo(g) will be an upper bound on
fo(e*) . Using the vector 6t (assuming it exists) we may, at little
computational expense, attempt to construct a vector gt which is
feasible to problem P according to the following rule:

Compute the vector xt using the relationship

t t
% = I 6. .v (=lyvecegt) .
b kek, jk7jk

v
We then compute a vector g% which satisfies the AWR and the relationship

xt = I 8
3 keK,

t
jkyjk (j=l,...,n)

This computation is straightforward since each xt must be in some

3

interval [yj,k" yj,k'+1] and hence may be expressed as a convex

combination of the two adjacent points Lt this

IR R RO

vector gt also satisfies the constraints fi(e) b (ol eve) 5

b
*

the number fo(gt) serves as an upper bound on fo(e) . We define

A-11

P e - —

the quantity

fo(%"‘) 1f 8% is feasible to P

UB(t) =
otherwise

so that

*
fo(e) < UB(t) (3.3)
serves as a complementary inequality to (3.2).

In general, the 2-th stage of the algorithm consists of problems

Pl,...,PL together with their solutions 61,...,6L (if they exist)

and the quantities LB(1), UB(1),...,LB(L), UB(L) . A node (or equiva-
lently, a problem) from which no branching has yet taken place (from
which no new problems have been created) is termed an intermediate node
(intermediate problem). The set of all intermediate problems at stage £
is denoted by I(2) . At stage one, I(2) = {1} , and, if three new

problems are created to form stage two, I(2) = {2,3,4} .

The algorithm is to be constructed in such a way that

FR) . u . FEY . (3.4)
tel (L)
)

We define the quantities

BLB(2) = min {LB(t)}
teI(R)

and

BUB(R) = min {UB(t)} .
t=1,...,L

Then (3.2), (3.3) and (3.4) imply that
BLB(L) < £ (87) < BUB(L) . (3.5)

This is the basic inequality which signals the completion of the
algorithm when equality is attained throughout. We will show that our
method of branching (creating new problems) sequentially sharpens (3.5)

stage by stage and will produce equality in a finite number of stages.
A-12

Check for Solution: If BLB(L) = BUB(L) at the f~th stage, an

optimal solution of problem P is 3t where UB(t) = fo(gt) = BUB(L) .

If BLB(2) < BUB(L) we must choose a node N* for branching,

i.e., a problem Pt to create new problems which will sharpen the bounds
in (3.5). We shall use the notion that the numbers LB(t) represent

approximations to the quantities min {fo(e) 2 eeF(Pt)fﬁF(P}} . Since
we are interested in determining min {fo(e) : eF(P)] , we choose

the smallest of the numbers LB(t) to determine Pt, the problem wmost

likely to generate a global solution of P,

Choice of Branching Node: Choose an intermediate node N for further
branching where LB(T) = BLB(R) .

Actually the algorithm will converge if any intermediate ncde
is selected for further branching and it is sometimes convenient from
a computational point of view to use a different rule for branching.
A common alternstive is to select that problem which has been soclved
last for further analysis, since‘the data defining that problem are
on hand and data needed for the new problem are very similar. This
alleviates the bodkkeeping involved and tends to minimize the number
of times a particular branch in the tree is revisited. On the other
hand, the tree tends to grow larger than the tree our rule would grow
and would not be efficient if the total time required is largely a
function of the time required to solve the subproblems. In our applica-
tion, the amount of data required to distinguish one problem from

aﬁother is minimal so that this should not be a factor.

Having selected node NT for branching at stage & , we create

new subproblems by choosing a branching variable 0y (or, equivalently,

=3

The rule for selecting' Xy follows.

) and partitioning the set K§ into subsets of consecutive integers.

A-13

Choice of a Branching Variable: Compute each of the differences

I R
@0 F) (3.6)
keK
J
for i=0,1,...,m and j =1,...,n ., Select J which corresponds

to the largest of these differences.

If all of these differences were nonpositive, upon s :mmirg

over j for each i =0,1,...,m we obtain

G A CI P (1-0,...,m) .
Thus
AT T
£ (6) < £,(67) = BLB(2)
and
AT 2
£,(87) £ £,(07) 20y (i=1,...,m)

Since gT satisfies the AWR, we see that aTeF(P) so that
BUB(%) < £ (8) < BLB(R)

that is, ET must have been a global solution of problem P, contradicting
our previous assumption. Thus, unless we are at a solution, at least
one of the differences (3.6) is positive and we choose J corresponding

to the largest of these quantities.

This rule for selecting a branching variable is analogous to the
rule suggested in [3] and [8]. Since, at a solution, all differences
(3.6) will be nonpositive, we are selecting a variable corresponding to

the worst violation of this criterion.

Note that not all differences (3.6) need be calculated at every

stage since some will automatically be zero. If the set {ajk : jeK?)
T 3T

satisfies the AWR, for some j then ej = ! so that all of the

corresponding differences (3.6) for i = 0,...,m are zero. Moreover,

A-14

N

if F,.(x.,) 1is a convex function, the piecewise linear approximation

131

fij(xj) of it (equations (2.1) through (2.4) and the AWR) will also

be convex. If we denote this approximation by ¥ (x,) we have

ij 3
AT VT
T oR. Gy)= e ?..(y.
keKj jk ij 7 jk keKj jk ij 7 jk

)

AT ’
(Gj satisfies AWR)

|
o]
@
o
2

so that the corresponding differences (3.6) are automatically nonpositive.
Incidentally, this also proves that the algorithm yields a global solu-

tion of a convex program in a single ;tage.

Having selected variable J for branching, we now are in a

position to create the new problems of the (&+1)-st stage. Let
Kg = {p,ptlyeeccsdyeseyt} « Note x§ # pr since in ' this case

T T ¥ Pl A
er 1 while GJ’p+1 eoe = eJr = 0 and the difference (3.6) would

be zero. Likewise x§ # Fgp Note also that K§ contains at least

three indices for otherwise branching could not take place on this

T .
variable. We may assume that xJe[yJa, bi] where yJa is the

nearest left neighboring division point of x§ and Y Ib is the :

nearest right division point. We do not exclude the case where

T .
Xy = Y32 = Ygp » 1eeey where xg falls on a division point.

A-15

Recall that problems Pl,...,PL have been set up and solved

at the end of stage 2 .

Branching Rule (refer to Figure 3):

- T
Let KJ {k : keKJ and yJa}
¥ 1
KJ = {a,b}

T
K {k : keky and y, <y}

[
o

Referring to the general definitions of problem pt at the beginning

of this section, define a new problem pt by setting K§ equal to one

of the above sets if that set contains at least two elements. The

other index sets Kt are unchanged (i.e., K§

3

manner we may define at least two new problems (since Kg had at

- K§ (3#3)). In this

xT) and possibly three new

: it
least three poirnts and L # X7 Y. ”
problems. These problems are numbered PL+1, PL+2 and PL+3

(if defined). Note that if a # b, the problem whose index set

K; = {a,b} must have only solutions with 0; satisfying the AWR.

The various possibilities are illustrated by example in Figure 3.

Only the, first possibility yields three new problems.

A-16

3 %
x§ = 14,5.6.7.8 K] K 5
y Poe ¥ y y
al i I SR el Tt e
- G ahy Sl e ciagea
]
F e + ; 4 {4} {4,5} {5,6,7,8}
T
J
e 1 | L 1 {4,5,6} {6} {6,7,8}
[T N T 1
T
X5
| | 1 | 1 {4,5,6,7} {7,8} {8}
= T T T~ 7\ 1
T
Lo
Figure 3. BRANCHING ON VARIABLE x

Beale and Tomlin suggest
two new subproblems are defined
notation, they set

i

KJ = {k : keKJ

+ T
KJ = {k : keKJ

so that the feasible regions of

overlap somewhat more than ours

- +
K. and KJ

sets
A

would be {4,5,6,7}

J

a different branching rule wherein

at each stage. Using the above

and yg SVp)

sae Yja = ka}

k+1 k+2

their problemé P and P

do. Referring to Figure 3, their

and {6,7,8} in the first

case while in the other three cases, their sets would define the

same subpfoblems as we do.

A-17

%

In the remarks which follow we shall assume that these problems

4 PL+1. PL"'2 and PL+3 have been defined. The other case is similar.

We first note that

L+3
FR) NFEH Cr@ N (U YY)
t=L+1

since any point 6 which satisfies the AWR and is in the set F(PT)

L+1 3

must be in at least one of the sets F(P), F(PL+2) or F(PL+) (0

Since F(P)C F(Pl) it follows that

FR)CFE NC L FEH)
tel(2)

i.e., F(P)C U F(Pt) . Continuing in this fashion we verify
tel(2)

inclusion (3,4):

re)C U reYH (3.4)
tel(®)

L+1 L+2

Moreover, since any point in one of the sets F(P~ "), F(P~ °) or

PL+3

F() must lie in F(PT) we have

WUepeSyie U wo®y
teI (L) tel(2-1)

This inclusion must be strict since the point eT cannot lie in any

of the sets F(PL+1), F(PL+2) or F(PL+3) . For suppose

eTeF(PL+1) and KL+

J 1 o {p,aoo’a} . Then BT

JK = 0 for k = atl,...,r

T T
and Xy < Yia which contradicts the assumption that xJe[yJa, bi] .

These remarks yield

reve U reH E U reHE. Ereh (3.7
tel(L) tel(2-1)

A-18

i.e., the sets k) F(Pt) are converging monotonically towards
teI(L)

the set P(P) .

When new problems are created for the (2+1)-st stage, new

lower and upper bounds are calculated. Note that

min (LB, B2, LB(e'*)) > La@D)
L+3
since F(PT).;E L. F(Pt) . Moreover, since the poii - 3T for
t=L+1

which fo(eT) = LB(PT) is not feasible for the new problems, it is

1ikely that the above inequality is strict. The above ianequality,
together with the definitions of BLB(L) and BUB(L) yield

BLB(1) 5 ... £ BLB(2) < fo(e*) < BUB(L) £ ... < BUB(1) (3.8)

so that the upper and lower bounds are converging towards the optim: i
value of P ., It remains to show that the process converges in a finite

number of stages.

Theorem. After a finite number of stages, the algorithm yields a global

solution of problem P,
Proof. At each stage of the algorithm an index Je{l,...,N} is

selected and the set K§ is subdivided into either two or three new

sets of consecutive integers according to the branching rule. Each of
these new sets contains at least two integers. Since there are but a
finite number of choices for J and a finite number of ways of subdivid=~

ing the original sets K, into sets containing at least two consecutive

J
integers, the algorithm would (if it continued) eventually produce prob-

lems whose feasible regions contained only points which satisfy AWR

(i.e., eventually F(P) = L} F(Pt)) . Such problems must be inter-
teI(R)

mediate problems since their regions cannot be further decomposed, and

LB(t) = UB(t) . Thus equality must eventually occur in (3.8) and the

algorithm is finite.
A-19

4, AN EXAMPLE

Problem Q:

minimize F (x) = (2x3-9x2+9x) + (-2x3+9x2-9x)

o 1 i 1 2 2 2

2

subject to Fl(x) -6x1 + 18x, 9
Fo(x) = 6x° . <0

2 1 2 -

0<=xl, x2,<_3

The feasible region of this problem is sketched in Figure 4.
There are local solutions near the points (0,0.5), (1.787,1.065) and
(2.738,3.000) with values -2.50, -2.97 and -1.46 respectively. The
subdivision points are taken at intervals of 1/2 starting at 0. These

values and the values of functions Fij at these points are displayed

in Table 1 and the results of linear approximatiocns are sketched in

Figure 5.

oL

3
Figure 4. FEASIBLE REGION FOR EXAMPLE

A-20

. Table 1.
DATA FOR EXAMPLE

: %) 'u u "™ml*a)fe Y
0 0 0 0 0 0 0 0
w2 | s/2 =32 32 f 12 |-s2 9 -9

1 3 6 1 f2 3 am

si2)l o 2z mnndawpl. o w -

g -2 2 m] 2 2 36 -36

5/2 | -5/2 -75/2 715/2 | 5/2 § 5/2 45 ~45

3 o 54 54| 3 0 54 -5

For *) Fyp (%)

L e

Fla(xy) = =Fyy(x))

| i

| i

1%} * Ty TIPS SRS SO R S e

A-21

kit M

Each subproblem has variable 6 = (61,92) = (610,....616;

ezo,...,eZG) . The data provided by subproblems is given in Table 2
and the branch and bound tree is illustrated in Figure 6. The global
! solution of the approximate problem is found to be the point

*

x = (1.714,1.000)

with objective function value -2,.857. This solution is actually found

at node 6 but not recognized until problem 8 has been solved.

LS8°C- Nl 000°T *x ¥ ¥ 0 T % {e‘z}
sece=|T |58 S b1t [5857 0 0 Lrglra v w | 19%5''E) .
— 000°T ¥ ¥ ¥ 0 T » » {€'2} d
— |000°2- Fidfii e s PR Rl ez t'oy | £
TNA 3 m B 000°T ¥ ¥ ¥ ¥ T 0 0 {z'1°0}
005 °€- - L1S8°C- 2 9 9IL T LS8°C- 0 O\.\mh\:* ¥y * m@-ﬂ;@;ﬁu 9
A 0050 x ¥ * ¥ 0 T 0 i'r'oy| 1°
sl Ll S 0000 [4 &« x 00 0 1T te'z'1'0y | ¢
L99°z- , 0990 0 0 0]€80°C 91,0 0% ux » » | 19%*'c}
oose-] “ 1% Jo 1 0 0 0 0 0]00sz|% | 0 1 0 0 0 0 0 | {96 vczt0}|"
I 0 0 0 0 T 0 0]0o0"t * ¢+ » 0 T % % {e‘c}
X LA 25 . -
000°2= 19 0 0 1 0 0 ofoos T |t | 0 00 o0 04| t9%*v*ez*t%0y ||
1 ¢ 0 B8 0.T O 6000t b ¥ » ¥ T 00 {z‘1°0}
x c7— L
000°2= 1o 0 0o 1 0 0 0f00s°T|%% ¢ | 0 o0 0 0%y 9% vierz 0} |©
L99°z-{ . 0 0 0°%/.%/{0 o0|ece'T 910 0 0% 0 0 | {9'*v*c’z*1°0}
b'4 7= -
£99°¢- £39°¢" 10 0 1 0 o6 o loouz |t 00T 00 0 0 | {9 vezt0r|"|T
z z z z
0 x 0 X
(nang | Tx nuvmw. M- w Auvmm w M L 7
() a1g uAumV 3 29 9% |=t30) 3 o by
o o < o = O < < < ® 7] 0 - o |®
oM [e o (1] (1] d O o o3 " |
e a3 = 0 0 ol ol = T Q. o »
3t =3 oo (g ct e e [= o o o' |
2. o e) 0 (e} o o rt (a3] = K
® o - et ~ L2} - . []
= P o K o o 2
aanou UM @2 x. = =}

"z ?19qel

ATINVXH JO4 SANTVA NOIINTOS

A-23

LB = -3.667
UB = -2.667

LB = -3.500
UB = -2.000

18 = -3.500 LB = -2.500
Ug = <2000 UB = -0.416

LB = -2,500
UB = -2,500

LB = -2.857
UB = -2.857

LB = -2.,000
UB = -2.000

LB = -2.857
UB = -2.857

Figure 6. BRANCH AND BOUND TREE FOR EXAMPLE

5. SOME COMPUTATIONAL CONSIDEILATIONS AND EXTENSIONS

In this section we point out some computational aspects of
the method, some possible variations, and an extension to non-

continuous problems.

We first note that each problem Pt contains m constraints
corresponding to the m constraints of problem Q plus n coastraints

of the form I ejk = 1 . Thus the Generalized Upper Bounding Technique

of Dantzig and Van Slyke [2] may be used to advantage here, and

especially if n 1is large compared to m ., This method allows one to

maintain a basis of size m x m .

Since each problem Pt is distinguished by the sets K;

need carry in memory only that information which identifies these

, one

sets, e.g., the first and last indices of the sets. Beale and Tomlin
(1) refer to these indices as "flags". The matrix identifying the

coefficients of the objective function and the first m constraints

of P is common to all problems Pt. f£'1ce the basic solution of a
problem being branched from is not feasible to the newly created

problems, it is not clear that the basis of each problem pt should
be carried in memory along with the sets K; . On the other hand,

the basic solution of a problem being branched from only fails to be

feasible to its descendants by virtue of one constraint and hence may
be useful in creating basic feasible solutions to the newly created

problems.

Once a point e(Q) is found which is feasible to problem Pt,

one could attempt to produce a feasible solution 3(q) which satisfies
the AWR by the device outlined in Section 3. The computations necessary 1

to produce such a point are fairly simple. If such a point g(q) may

be produced, one ‘can immediately compute fo(a(q)) and compare this

A=-25

with the BUB(2), updating this number if fo(a(q)) < BUB(L) .
In such a way one may be able to tighten the number BUB(L) at
each simplex iteration solving Pt and possibly come across an

*
optimal solution © of P during the solution of a subproblem t,
Of course, this solution would not be recognized as such until equality

oceurs in (3.8).

Finally, we point out a simple modifcation of the method that

will allow one to deal with piecewise continuous furctionsa F

ij °*
In order to insure that problem Q has a solution, we assume also that
each Fij is lower semicontinuous. The grid poiats {yjk s keKj;

j=1,...,n} are chosen so that all points of discontinuity of the

Fij's are among them. Let YK be a point of discontinuity of

FLJ and set
FIJ = : +lin FIJ(XJ)
7" Yk
o
Frg = FraUge)
4
FU = p +l:l.m FIJ(XJ)
SRS
The lower semicontinuity of FIJ at Yk implies that
o - o+
F/; S min {F 1 F ;} . Assume, for the sake of discussion, that

strict inequality holds, and define new indices K , K° and kt

corresponding to the quantities F. ° and -r+ respectively.

13’ FIJ J

These indices are to be ordered as i
- R
K-1<K < K <K <K+1

and 6+ are defined.

(o]
and corresponding new variables 6 eJK JK

JX '’

A-26

= o= @ 0 . o
Problem P is thus redefined with eJK FiJ + eJK FiJ + eJK FiJ

- o +
replacing eJKFiJ(yJK) ’ BJK + eJK + eJK replacing BJK and

= +
{ooo.K‘l.K .KO.K .K+1.oon} l'eplacing KJ .
With these modifications carried out at every point of

discontinuity, the algorithm may be applied as before with no addi-

tional changes. Note that a global solution of problem P cannot have
- o o +)

adjacent nonzero pairs (GJK' eJK) or (eJK' eJK) unless the value

of FoJ(yJK) is zero, for otherwise the value of fo could be

decreased by setting egx =] while still maintaining feasibility,

Even if FoJ(yJK) = 0 and one of the above pairs is nonzero, an

o

equivalent feasible solution may be found for which eJK =1 and
which gives the same value to fo(e) v
(s} el
In the case that Fry= FIJ (FIJ is continuous from the
left), one need only define two new variables, say egK and ejK »

and modify problem P as above. The case where F is right con-

1J

tinuous is similar.

(1]

[2]

8 [3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

BEALE, E. M. L. and TOMLIN, J. A. (1970). Special facilities
in a general mathematical programming system for nonconvex
problems using ordered sets of variables. Proceedings of the

Fifth International Conference on Operations Research

(J. Lawrence, ed.) 447-454, Tavistock Publi...icns, London,

DANTZIG, G. B, and VAN SLYKE, R, M. (1967). Genecalized upper

bounding techniques. J. Comput. System Sci. 213-226,

FALK, J. E. and SOLAND, R. M, (1969). An algorithm for ceparable

nonconvex programming problems. Management Sci. %é 550-569,

FALK, J. E. (1969). Ilagrange multipliers and nonconvex prusgrams.

SIAM J. Control i 534-545,

FALK, J. E. and HOROWITZ, J. L. (1972). Critical path problems

with concave cost-time curves., Paper submitted for publication.

LAWLER, E. L. and WOOD, D, E. (1966). Branch-and-bound methods:

A survey. Operations Res. %ﬁ 69y-719.

MILLER, C. E. (1963) The simplex method for local separable
programming., Recent Advances in Mathematical Programming
(R. L. Graves and P. Wolfe, eds.) 89-100. McGraw Hill,

New York.

SOLAND, R. M. (1971). An algorithm for separable nonconvex

programming problems II: Nonconvex constraints. Management

ei. L7 759=773.

A-29

{9) SOLAND, R. M. (1971). Optimal plant location with concave costs.,

Paper presented at 39th National Meeting of the Operations
Research Society of America in Dallas, Texas.

[10] TOMLIN, J. A. (1970). Branch and bound methods for integer and

non-convex programming. Integer and Nonlinear Programming

(J. Abadie, ed.) 437-450. North Holland Publishing Company,
Amsterdam,

-

APPENDIX B

A DESCRIPTION OF THE LINEAR
PROGRAMMING SUBROUTINE LINPRG

Paul F. McCoy

A. INTRODUCTION

The subroutine LINPRG solves linear programming problems
by the standard product form version of the simplex method, as
described in [1]. LINPRG is a slight modification of the code
written by John Tomlin to run the experiments presented in [4].
It was used again for the tests in [2]. An important feature
of the code is that basis reinversion is accomplished by LU
decomposition using Gaussian elimination. The reinversion
algorithm was developed by Tomlin and is described in [6]. It
uses a pivot tolerance in choosing the pivot elements so as to
compromise the goals of minimizing the creation of non-zero
elements and of pivoting on large elements to maintain numerical
stability.

B. INTERNAL WORKINGS OF LINPRG

Reference [3] provides background reference for this

section.

NOTATIONS
NCOL = number of variables (including structurals, slacks and
artifiecials),
NROW = number of rows (including the objective row),
Xx = the (NCOL - NROW) vector of structural variables,
s = the NROW vector of slack and artificial variables,

¢ = the (NCOL - NROW) vector of costs (objective function
coefficients),

A = the [(NROW - 1) x (NCOL - NROW)] matrix of structural
coefficients,

b = the (NROW - 1) vector of right hand side values corres-
ponding to the linear constraints.

B-1

.
?
i
4

s e

BASIC PROBLEM

minimize c¢x such that

Ax

v
o

b and x >

iV A

ACTUAL PROBLEM

maximize s; such that s > 0, x > 0 and

- | =r
objective row - 1 i & = 0T
i . =
-1 i s =
|
|
L4 1
" °
[]
| A Y b
slacks and AAJ el . 2Ee
artificials e X s
A

SET-UP PROCEDURES

Before calling LINPRG, MOGG packs the constraint coeffi-

cients

¢ |

k J

into the one-dimensional array A(:). Only non-zero entries are

stored. The location of coefficients is maintained by the row
index array IA(°:) and the column pointer array LA(-:).

[P -

value of NELEMth nonzero coefficient,

A(NELEM) =
IA(NELEM) = row of that coefficient,
LA(NCOL) = the first element of A(-:) belonging to

column NCOL,
the last element belonging to column NCOL.

L}

LA(NCOL + 1) - 1
The objective coefficients are placed in the first row. The

right hand side coefficients [g

in the array B(:). The type of each row is stored in array
ISTYPE(»)¢

} are stored in unpacked form

0 if ROW = 1 (objective row)
ISTYPE(ROW) = (-1 if equality (=)
1 1f fnequality (£ or >).

Initially the starting basis is composed of the slack and
artificial variables. On subsequent calls of LINPRG, the last
basis of the previous problem is used as the starting basis
with those variables excluded from the basis by MOGG replaced
by the correpsonding slack or artificial. The basic variables
are doubly indexed by the arrays JH(:) and KINBAS(-).

JH(ROW) = that basic variable that pivots on row ROW
KINBAS(NCOL) = pivot row of variable NCOL if it is a basic
variable; 0 otherwise.
Ve Major Subroutines

LINPRG uses 12 subroutines--eight are major, three are
bookkeeping, and one prints out the iteration path. The
eight major subroutines form the component parts of the sim-
plex cycle with LINPRG linking them together. Each cycle
through the following flowchart corresponds to one cycle of
the simplex method with a basic/nonbasic variable interchange.

B-3

4:
:
|
i

*
+

INYERT

FO?MC no yes
optimal BT?AN does the representation
or of the basis inverse
infeasible PR}CE need to be recalculated?
FT?AN
CHUZR

¥
UPBETA

,//// v
WRETA

a. INVERT (Invert the Basis)

INVERT starts with the list of basic variables stored
in the array JH(-:). Using the corresponding coefficients
stored in array A(°), it calculates the inverse of the basis
(denoted by B) using LU decomposition. The procedure is des-
cribed in detail in Reference [6].

In general, the matrix of basis coefflclients, B, is first
decomposed using Gaussian elimination into the product of a
lower triangular matrix, L, and an upper triangular mitrix, U:

B=LU and B~L = y~1ip-1

Once this is done, a representation of the basis inverse is
immediate since the inverse of a triangular matrix is a simple
rearrangement of the matrix itself. As an example

-1
Upy Upp Ugg l/u11 00 i —ulz/u22 olf1r o —u13/u33

=1 _ "
9} =(0 Usy Upsl = 0 Lo 0 l/u22 0110 1 —u23/u33

0 0 0 01 2/, 1|0 0 1/u

b
and likewise for L'l.

33

The LU decomposition of the basis is not unique and one
wants to choose that one which (1) minimizes the number of
nonzero entries so that storage requirements are reduced and

B-4

the number of computation in the BTRAN and FTRAN operations are
minimized; and (2), involves division (e.g., l/ull, l/u22,

1/u33) by numbers as large as possible to minimize the growth
of errors (improve numerical stability). The search for such

a decomposition is guided by the tolerance ZTOLPV which will be
described in Section 3.

As shown above, the representation of the basis<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>